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Definitions |

Definitions:
* The probability that person no i shall have the

value 1 on the variable Y will be written Pr(Y; =1).

Then Pr(Y, # 1) =1 - Pr(Y;=1)
* The odds that person no i shall have the value 1

on the variable Y, here called O, is the ratio
between two probabilities

Pr(y =1 .
Ol(ylzl)zl P(yl ) = pl
- r(Yi = 1) 1- o;
Definitions |l
Definitions:

« The LOGIT, L, , is the natural logarithm of
the odds, O, , for person no i:

L =In(0y)
« The model assumes that L, is a linear
function of the explanatory variables x; ,
. ie.

* Li=Pt+ % BiX

ji ) where j=1,..,K-1, and i=1,..,n

Fall 2009 © Erling Berge 2009 4
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Logistic regression: assumptions

» The model is correctly specified

» The logit is linear in its parameters
» All relevant variables are included
* No irrelevant variables are included

x-variables are measured without error
Observations are independent

No perfect multicollinearity

No perfect discrimination

Sufficiently large sample

Fall 2009 © Erling Berge 2009 5

Assumptions that cannot be tested

» Model specification
 All relevant variables are included

» x-variables are measured without error
* Observations are independent

Two will be tested automatically.

If the model can be estimated there is

» No perfect multicollinearity and

» No perfect discrimination

Fall 2009 © Erling Berge 2009 6
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LOGISTIC REGRESSION
Statistical problems may be due to

* Too small a sample

* High degree of multicollinearity

— Leading to large standard errors (imprecise
estimates)

— Multicollinearity is discovered and treated in the
same way as in OLS regression
» High degree of discrimination (or separation)

— Leading to large standard errors (imprecise
estimates)

— Will be discovered automatically by SPSS

Fall 2009 © Erling Berge 2009 7

Assumptions that can be tested

» Model specification

* logit is linear in the parameters

* no irrelevant variables are included
 Sufficiently large sample

» What is “sufficiently large” depends on the number
of different patterns in the sample and how cases
are distributed across these

» Testing implies an assessment of whether
statistical problems leads to departure
from the assumptions

Fall 2009 © Erling Berge 2009
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LOGISTISK REGRESSION: TESTING (1)

Two tests are useful

* (1) The Likelihood ratio test

—This can be used analogous to the F-
test

* (2) Wald test

—The square root of this can be used
analogous to the t-test

Fall 2009 © Erling Berge 2009 9

LOGISTISK REGRESSION: TESTING (2)

 The LikeLihood Ratio test :

* The ratio between two Likelihoods equals the
difference between two LogLikelihoods

» The difference between the LogLikelihood (£L)
of two nested models, estimated on the same
data, can be used to test which of two models
fits the data best, just like the F-statistic is used
in OLS regression

» The test can also be used for singe regression
coefficients (single variables). In small samples
it has better properties than the Wald statistic

Fall 2009 © Erling Berge 2009 10
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LOGISTISK REGRESSION: TESTING (3)

The LikeLihood Ratio test statistic

* Y% =-2[cL(modell) - ££(model2)]
will, if the null hypothesis of no difference
between the two models is correct, be
distributed approximately (for large n) as
the chi-square distribution with number of
degrees of freedom equal to the difference
in number of parameters in the two models

(H)

Fall 2009 © Erling Berge 2009 11

Example of a Likelihood Ratio test

* Model 1: just constant From
« Model 2: constant plus one variable Tab 7.1:
-2 Log
Likelihood
* X% =-2[£L(modell) - £(model2)] 209,212
= -2cc(modell) + 22£4(model2) 195,684
» Find the value of the ChiSquare and 195,269
the number of degrees of freedom 195 267
- e.g.: LogLikelihood (mod1) = 209,212/(-2) 195267

LogLikelihood (mod2) = 195,267/(-2)

Fall 2009 © Erling Berge 2009 12
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LOGISTISK REGRESSION: TESTING (4)

The Wald test

* The Wald (or chlsquare) test statistic provided
by SPSS =12 = (b,/ SE(b,))? (where t is the t
used by Hamlltonfcan be used for testing single
parameters similarly to the t-statistic of the OLS
regression

« If the null hypothesis is correct, t will (for large n)
in logistic regression be approximately normally
distributed

« If the null hypothesis is correct, the Wald statistic
will (for large n) in logistic regression be
approximately chisquare distributed with df=1

Fall 2009 © Erling Berge 2009 13

Excerpt from Hamilton Table 7.2

Iterasjon -2 Log likelihood

0 209,212

1 152,534

2 149,466

3 149,382

4 149,382

5 149,382

Variables B| S.E. | Wald | df | Sig. | Exp(B)

Lived -046| ,015| 9,698| 1| ,002| ,955

Educ -166| ,090| 3,404| 1| ,085| ,847

Contam 1,208 ,465| 6,739| 1| ,009| 3,347

Hsc 2,173| ,464|21,919| 1| ,000| 8,784

Constant 1,731 | 1,302 1,768| 1| ,184| 5,649

Fall 2009 © Erling Berge 2009 14
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Confidence interval for parameter estimates

» Can be constructed based on the fact that
the square root of the Wald statistic
approximately follows a normal distribution
with 1 degree of freedom

* by - t,*SE(by) < By < by + t,*SE(by)
where t is a value taken from the table of

the normal distribution with level of
significance equal to a

Fall 2009 © Erling Berge 2009 15

Can be constructed based on the t-
distribution (1)

« If a table of the normal distribution is missing
one may use the t-distribution since the t-
distribution is approximately normally
distributed for large n-K (e.g. for n-K > 120)

Fall 2009 © Erling Berge 2009 16
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Excerpt from Hamilton Table 7.3

B S.E. Wald | df | Sig. | Exp(B)
Step 1 | lived -,047 ,017 7,550 1| ,006 ,954
educ -,206 ,093| 4,887 1| ,027 ,814
contam 1,282 ,481 7,094 1| ,008 3,604
hsc 2,418 ,510| 22,508 1| ,000| 11,223
female -,052 ,557 ,009 1] ,926 ,950
kids -,671 ,566 1,406| 1| ,236 ,511
nodad -2,226 999 4964 1| ,026 ,108
Constant 2,894 | 1,603 3,259 1| ,071| 18,060
Fall 2009 © Erling Berge 2009 17
More from Hamilton Table 7.3
-2 Log
Iteration | likelihood Coefficients
conta
Const | lived | educ | m hsc | female | kids | nodad
Step0 209,212 | -0,276
Stepl |1| 147,028| 1,565|-,027|-130| ,782|1,764| -,015|-,365 | -1,074
2 141,482 | 2,538 |-,041|-,187| 1,147 2,239| -,037|-580 | -1,844
3 141,054 | 2,859 -,046|-,204 | 1,269| 2,401| -,050|-,662 | -2,184
4 141,049 | 2,893|-,047|-,206 | 1,282| 2,418 | -,052|-,671| -2,225
5 141,049 | 2,894 |-,047|-,206 | 1,282| 2,418 | -,052|-,671 | -2,226
Fall 2009 © Erling Berge 2009 18
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Is the model in table 7.3 better than the
model in table 7.2 ?

e ££(model in 7.3) = 141,049/(-2)
e ££(model in 7.2) = 149,382/(-2)

Y2, = -2[£L(model 7.2) - ££(model 7.3)]

Find %2, value
Find H

Look up the table of the chisquare
distribution

Fall 2009 © Erling Berge 2009 19

The model of the probability of
observing y=1 for person i

3 1 _exp(L)
“1+exp(-L) l+exp(L,)

Pr(y, =D =E[y, | X]

K-1

where the logit L, =3, + ZBJ. X is alinear function
j=1

of the explanatory variables

It is not easy to interpret the meaning of the 3
coefficients just based on this formula

Fall 2009 © Erling Berge 2009 20
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The odds ratio

- The odds ratio, O, can be interpreted as the
relative effect of having one variable value
rather than another

e.g.ifx,=t+1inL and x; =tin L,
* O =0, (Y= L) O (Y=1] L)

= exp[L;" J/ exp[L]

= exp[py]
Why By ?

Fall 2009 © Erling Berge 2009 21

The odds ratio : example |

+ The Odds for answering yes =
eb0+b1*Alder+b2*Kvinne+b3*E.utd+b4*Barn i HH

+ The odds ratio for answering yes between women and men =

by +b, *Alder +b, *1+b;*E .utd +b, *Barn_i_ HH

e eb2
eb0+bl*AIder+b2*O+b3*E.utd +b,*Barn_i_HH
Remember the rules of power exponents
Fall 2009 © Erling Berge 2009 22

© Erling Berge 2009 11



Ref.:
http://www.svt.ntnu.no/iss/Erling.Berge/

The odds ratio : example Il

« The Odds for answering yes given one
year of extra education

ebO +hy *Alder-+b,*Kvinne-+b;*( E.utd+1)-+b,*Barn_i_HH

_ o
etb+bl*AIder+b2*Kvinne+b3"‘E.utd +h*Bam_i_HH €
Remember the rules of power exponents
Fall 2009 © Erling Berge 2009 23

Example from Hamilton table 7.2
* What is the odds ratio for yes to closing
the school from one year extra education?

» The odds ratio is the ratio of two odds
where one odds is the odds for a person
with one year extra education

eb0 +b, * ArBuddIByen-+b, *(Utdanning +1)+b; *UreiningEigEigedom-+h, *MangeHSCmagter

eb0 +b,* ArBudd1Byen-+b, *Utdanning +b, *UreiningEigEigedom-+b, *MangeHSCmater

eb2 *(Utdanning+1)

— _ebZ
o ebz*Utdanning o

Fall 2009 © Erling Berge 2009 24
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Example from Hamilton table 7.2 cont.

» Odds ratio = Exp{b2} = exp(-0,166) = 0,847

» One extra year of education implies that the
odds is reduced with a factor of 0.847

* One may also say that the odds has
increased with a factor of

100(0,847-1)% = -15,3%
* Meaning that it has declined with 15,3%

Fall 2009 © Erling Berge 2009 25

Conditional Effect Plot

 Set all x-variables except x, to fixed values
and enter these into the equation for the
logit

* Plot Pr(Y=1) as a function of x, i.e.

« P =1/(1+exp[-L]) = 1/(1+exp[-konst - b, x,])
for all reasonable values of x, ,

“konst” is the constant obtained by entering
into the logit the fixed values of variables
other than x,

Fall 2009 © Erling Berge 2009 26
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Excerpt from Hamilton Table 7.4

Minimu Maximu

B S.E. Wald | df | Sig. | Exp(B) m m Mean
lived -,040 ,015| 6,559 | 1| ,010 ,961 1,00 81,00 | 19,2680
educ -,197 ,093| 4509| 1| ,034 ,821 6,00 20,00 | 12,9542
contam 1,299 ATT 7,423 | 1| ,006 3,664 ,00 1,00 ,2810
hsc 2,279 490 | 21591 | 1| ,000| 9,763 ,00 1,00 ,3072
nodad -1,731 ,725| 5696 | 1| ,017 177 ,00 1,00 ,1699
Constant 2,182 | 1,330 2692| 1] ,101 8,866

Logit:
L =2.182 -0.04*lived -0.197*educ +1.299*contam +2.279*hsc -1.731*nodad

Here we let "lived” vary and set in reasonable values for other variables
Fall 2009 © Erling Berge 2009 27

Conditional effect plot from Hamilton table 7.4
(fig7.5): effect of living for a long time in town

0.8

0.4

0.2

—0
40 60 g

y=1/(1+exp(-(2.182-0.04x-0.197x12.95+1.299x0.28+2.279x0.31-1.731x0.17)))Mean

y=1/(1+exp(-(2.182-0.04%-0.197x12.95+1.299x1+2.279x1-1.731x0))) Max
y=1/(1+exp(-(2.182-0.04x-0.197x12.95+1.299x0+2.279x0-1.731x1))) Min
Fall 2009 © Erling Berge 2009 28
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Conditional effect plot from Hamilton table 7.4
(fig7.6): effect of pollution on own land

0.6
0.4

Y=(1Hexp((2182-0.04<19.27-0.197:12.965+1.299¢:2 279-0.31-1.731017),_
y=1(1+exp((2.182-0.04x1-0.197:6+1.290x¢+2 279<1-1.731-0)) "
y=1(1+exp(2.182-0.04-81-0.197x20+1.290x+2 279-0-1.731x1))) Min

Fall 2009 © Erling Berge 2009 29

Coefficients of determination

 Logistic regression does not provide measures
comparable to the coefficient of determination in
OLS regression

« Several measures analogous to R? have been
proposed

« They are often called pseudo R?
» Hamilton uses Aldrich and Nelson'’s
pseudo R? = y2/(y2+n)
where y2 = test statistic for the test of the whole

model against a model with just a constant and
n= the number of cases

Fall 2009 © Erling Berge 2009 30
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Some pseudo R? in SPSS

« SPSS reports Cox and Snell, Nagelkerke, and in
multinomial logistic regression also McFadden’s
proposal for R2

« Aldrich and Nelson’s pseudo R2 can easily be
computed by ourselves [pseudo R2 = y2/(y2+n)]

Model Summary

Pseudo R-Square
Cox & a
-2Log | SnellR | Nagelkerke | | Cox and Snell e
Step | likelihood | Square | R Square || Nagelkerke ok
1 *kk *kk *kk MCFadden ek
Fall 2009 © Erling Berge 2009 31

Statistical problem: linearity of the logit

 Curvilinearity of the logit can give biased
parameter estimates

» Scatter plot for y - x is not informative since y
only has 2 values

» To test if the logit is linear in an x-variable one
may do as follows
— Group the x variable

— For every group find average of y and compute the
logit for this value

— Make a graph of the logits against the grouped x

Fall 2009 © Erling Berge 2009 32
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Y="Closing school” vs. x= "Years lived in town”

1,00—

Oagd OOQO O O [o] o
0,80 —

0,60

Scatter plot is not
very informative

0,40 —

SCHOOLS SHOULD CLOSE

0,20

0,00 DAEDAD O GD GxED o [o]

T T T T T
0,00 20,00 40,00 60,00 80,00 100,00
YEARS LIVED IN WILLIAMSTOWN

Fall 2009 © Erling Berge 2009 33

Linearity in logit: example

YEARS LIVED IN WILLIAMSTOWN (Banded)
SCHOOLS _
SHOULD <=3 4-6 7-11 12-22 | 23-33 | 34-44 |45+
CLOSE
N OPEN 7 14 7 22 11 13 13
N CLOSE 13 14 10 17 8 2 2
Within
group | Mean (=p) ,65 ,50 ,59 44 42 13 13
Logit | Ln(p/(1-p)) 0,619 0 0,364 | -0,241|-0,323| -1,901|-1,901
Fall 2009 © Erling Berge 2009 34
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Chart
Is the o
logit A
linear in ;_
"years 5"
lived in
town”?
Maybe! e
GroupedLived [ll1 2 s BN+ s Mls [ 17

In case of curvilinearity the odds ratio is non-
constant

Assume the logit is curvilinear in education. Then the odds ratio for
answering yes, adding one year of education, is:

eltb+ba*Alder+q<*Kvinne+qm*(E.utd+1)+hm2*( E.utd+1)°

eh)+ba*AIder+q<*Kvinne+qm*E.utd+qm ,*E.utd?

e@m+Qm2%EiMF+2Euw+ﬂ eqw+qm2ﬂ25md%u

_ ebm g 2*( 2E.utd +1)
ebutd Z-kE'Utd2 eO

Fall 2009 © Erling Berge 2009 36
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Statistical problems: influence

* Influence from outliers and unusual x-

values are just as problematic in logistic

regression as in OLS regression

Fall 2009

» Transformation of x-variables to symmetry

will minimize the influence of extreme
variable values

 Large residuals are indicators of large
influence

Fall 2009 © Erling Berge 2009

Influence: residuals

* There are several ways to standardize
residuals

—"Pearson residuals”
— "Deviance residuals”
* Influence can be based on
— Pearson residual
— Deviance residual

— Leverage (potential for influence): i.e. the
statistic h,

Fall 2009 © Erling Berge 2009
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Diagnostic graphs

Oultlier plots can be based on plots of
estimated probability of Y.=1
(estimated P;) against

* DeltaB, AB;, or
» Delta Pearson Chisquare, A y% , or
» Delta Deviance Chisquare, A y*p

Fall 2009 © Erling Berge 2009 39

SPSS output

* Cook's =delta B in Hamilton

— The logistic regression analogue of Cook's influence statistic. A
measure of how much the residuals of all cases would change if
a particular case were excluded from the calculation of the
regression coefficients.
* Leverage Value = h in Hamilton

— The relative influence of each observation on the model's fit.

« DfBeta(s) is not used by Hamilton in logistic regression

— The difference in beta value is the change in the regression
coefficient that results from the exclusion of a particular case. A
value is computed for each term in the model, including the
constant.

Fall 2009 © Erling Berge 2009 40
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SPSS output from "Save” (1)

 Unstandardized Residuals

— The difference between an observed value
and the value predicted by the model.

* Logit Residual

. =—————;wheree. =Y. -7,
7. (1-71)
[ [
7; is the probability that y; = 1; the “hat” means
estimated value
Fall 2009 © Erling Berge 2009 42
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SPSS output from "Save” (2)

» Standardized = Pearson residual

— The command "standardized” will make SPSS write a variable
called ZRE_1 nad labelled “Normalized residual”

— This is the same as the Pearson residual in Hamilton

+ Studentized = [SQRT(delta deviance chisquare)]

— The command "Studentized” will make SPSS write a variable
called SRE_1 and labelled “Standardized residual’

— This is the same as the square root of "delta Deviance
chisquare” in Hamilton, i.e. "delta Deviance chisquare” =
(SRE_1)2

» Deviance = Deviance residual

— The command "Deviance” will make SPSS write a variable called
DEV_1 and labelled “Deviance value”

— This is the same as the deviance residual in Hamilton

Fall 2009 © Erling Berge 2009 43

Computation of Ay%p;,

» Based on the 2
quantities provided by AZZ o rj
SPSS we can P() (1—h-)

i

compute “delta
Pearson chisquare”

* Where it says r; in the
formula we put in
ZRE_1 and where it
says h; we putin
LEV 1

Fall 2009 © Erling Berge 2009 44
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Computation of Ay%p;

Based on the quantities provided by SPSS
we can compute "Delta Deviance Chisquare”

T lomnd el Ay2  =SRE_1*SRE 1

, » (1)
chisquare” we
square SRE_ 1
, d?

2. Alternatively we 2 j

put in d=DEV_1 A;(D( h =

and h=LEV_1in J (1 _h. )

J

the formula™

Fall 2009 © Erling Berge 2009 45

DeltaDevianceChisquare (with/CaseNO)

Fall 2009
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DeltaDevianceChisquare (with/delta B)
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Delta Pearson Chisquare (with/CaseNO)
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Delta Pearson Chisquare (with/ delta B)
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Cases with large influence

Case | Case | Case Case | Case | Case

No No No No No No

Variables 96 65 99 Variables 96 65 99

Y=close 1,00 ,00 ,00 ZRE_1 421| -2,48| -5,36

lived | 68,00 | 40,00 1,00 DEV_1 242| -1,98| -2,61

educ | 12,00 12,00 | 12,00 DFBO_1 -,32 ,01 -,36

contam ,00 1,00 1,00 DFB1_1 ,01 ,00 ,00

hsc ,00 1,00 1,00 DFB2_1 ,02 ,01 ,02

nodad ,00 ,00 ,00 DFB3_1 -,08 -,15 -,18

PRE_1 ,05 ,86 97 DFB4_1 -,06 =17 -,19

COO0_1 ,64 34 41 DFB5_1 -,08 ,16 14

RES_1 ,95 -,86 -,97 DeltaPearsonKjiKv | 18,34 6,47 | 29,20

SRE_1 2,46 | -2,04| -2,62 DeltaAvviksKjiKv 6,07 4,14 6,89
Fall 2009 © Erling Berge 2009 50

25



Ref.:
http://www.svt.ntnu.no/iss/Erling.Berge/

From Cases to Patterns

» The figures shown previously are not
identical to those you see in Hamilton

« Hamilton has corrected for the effect
of identical patterns

Fall 2009 © Erling Berge 2009 51

Influence from a shared pattern of
X-variables

* In a logistic regression with few variables many
cases will have the same value on all x-variables.
Every combination of x-variable values is called a
pattern

« When many cases have the same pattern, every
case may have a small influence, but collectively
they may have unusually large influence on
parameter estimates

* Influential patterns in x-values can give biased
parameter estimates

Fall 2009 © Erling Berge 2009 52
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Influence: Patterns in x-values

* Predicted value, and hence the residual will
be the same for all cases with the same
pattern

* Influence from pattern j can be found by
means of
— The frequency of the pattern
— Pearson residual
— Deviance residual
— Leverage: i.e. the statistic h,
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Finding X-pattern by means of SPSS

 In the "Data” — menu find the command ”Identify
duplicate cases”

» Mark the x-variables that are used in the model
and move them to "Define matching cases by”

« Cross for "Sequential count of matching cases in
each group” and "Display frequencies for created
variables”

» This produces two new variables. One,
"MatchSequence”, numbers cases sequentially 1,
2, ... where several patterns are identical. If the
pattern is unique this variable has the value 0.

» The other variable, "Primary...”, has the value 0 for
duplicates and 1 for unique patterns
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X-patterns in SPSS; Hamilton p238-242

Valid Cumulative
Frequency | Percent | Percent Percent
Duplicate Case 21 13,7 13,7 13,7
Primary Case 132 86,3 86,3 100,0
Total 153 100,0 100,0
Sequential count of Valid Cumulative
matching cases Frequency | Percent | Percent Percent
0 [115 patterns with 1 case] 115 75,2 75,2 75,2
1 [17 patterns with 2 or 3 cases] 17 11,1 11,1 86,3
2 [17-4=13 patterns with 2 cases] 17 11,1 11,1 97,4
3 [4 patterns with 3 cases] 4 2,6 2,6 100,0
Total 153 100,0 100,0
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Hamilton table 7.6 Symbols

# unique patterns of x-values in the data (J<=n)

# cases with the pattern j (m>=1)

Sum of y-values for cases with pattern j (= # cases with pattern j

J
m
|3i Predicted probability of Y=1 for case with pattern j
YJ
and y=1)

r. Pearson residual for pattern j

;(é Pearson Chisquare statistic

d. |Deviance residual for pattern j

X0 | Deviance Chisquare statistic

h, Leverage for case i
hi Leverage for pattern j
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New values for Ay*p; and Ay p,

« By "Compute” one may calculate the
Pearson residual (equation 7.19 in
Hamilton) and delta Pearson chisquare
(equation 7.24 in Hamilton) once more.
This will provide the correct values

» The same applies for deviance residual
(equation 7.21) and delta deviance
chisquare (equation 7.25a)
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Leverage and residuals (1)

» Leverage of a pattern is obtained as number of
cases with the pattern times the leverage of a
case with this pattern. The leverage of a case is
the same as in OLS regression

» Pearson residual can be found from

Yj—ijj

" np s
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Leverage and residuals (2)

* Deviance residual can be found from
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Two Chi-square statistics

J
» Pearson Chi-square 2 Z r2
statistics Ap = j
j=1
» Deviance Chi-square 2 ) 2
statistics Ap = Z dj
j=1

» Equations are the
same for both cases
and patterns
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The Chisquare statistics

Both Chisquare statistics:
1. Pearson-Chisquare %> and
2. Deviance-Chisquare y’,

« Can be read as a test of the null
hypothesis of no difference between the
estimated model and a “saturated
model”, that is a model with as many
parameters as there are cases/ patterns
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Large values of measures of influence

» Measures of influence based on changes
(A) in the statistic/ parameter value due to
excluded cases with pattern |

— AB, "delta B” - analogue to Cook’s D
— Ay’pg;) “delta Pearson-Chisquare”

— Ay’p “delta Deviance-Chisquare”
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Fall 2009

What is a large value of Ay?p; and Ay?p,

* Both Ay?p) and Ay?p; measure how badly the
model fits the pattern j. Large values indicates
that the model would fit the data much better if all
cases with this pattern were excluded

* Since both measures are distributed

asymptotically as the chisquare distribution,
values larger than 4 indicate that a pattern affects

the estimated parameters “significantly”
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ABJ- “delta B”

* Measures the
standardized
change in the
estimated
parameters (b,)
that obtain when
all cases with a
given pattern |
are excluded

2
mh,
AB; = 2
(1-h;)
J
Larger values means larger
influence

ABj >= 1 must in any case
be seen as "large influence”
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delta B (with caseNO)
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Ay’ Delta Pearson Chisquare”

e Measures the r2
reduction in AZZ R
Pearson 2 P(1) (1_ h. )
that obtains J

from excluding
all cases with
pattern j
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Delta Pearson Chisquare (with delta B)

30,00 41421
25,00
; 20,00 —
—_ ,63662
=
o
o
)
@ 15,00
[<5)
a
S
@
o
£ 10,00
&
04734
5,001
[e] ,16927
@ [2553]
Do S ° oo ©
%06
000  ammEEp@EmIE®EDHO S L @ %o mcscom

T T T T T T
0,00000 0,20000 0,40000 0,60000 0,80000 1,00000
Predicted probability

Fall 2009 © Erling Berge 2009 67

Ax*pg “Delta Deviance Chisquare”

« Measures changes in d 2
j

deviance that obtains

cases with pattern j
This is equivalent to

Axor ==2| LLy —LLy |

LLy is the LoglLikelihood of a model with K parameters
estimated on the whole sample and LLy; is from the estimate
of the same model when all cases with pattern j are excluded

2
from excluding all A;(D(j) = 1 h
(1-h;)
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Delta Deviance Chisquare (with delta B)
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Influence of excluded cases/patterns

Logit coefficient

Variables in the | Sample Excluding Excluding
model case 99 case 96
Ax2P(i) =18,34 | Ay2P(i) =29,20

lived -,040 -,045 -,052
educ -,197 -,224 -,214
contam 1,299 1,490 1,382
hsc 2,279 2,492 2,347
nodad -1,731 -1,889 -1,658
Constant 2,182 2,575 2,530
2*cr(modell) | -142,652 -135,425 -136,124
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Influence of excluded cases/patterns

08

20 40 60 80

y=1/(1+exp(-(2.18-0.04x-0.2x13+1.3x0.28+2.28x0.31-1.73x0.17)))
y=1/(1+exp(-(2.53-0.05x-0.21x 13+1.38x0.28+2.35x0.31-1.65x0.17)))
y=1/(1+exp(-(2.58-0.04x-0.22x13+1.49x0.28+2.49x0.31-1.89x0.17)))
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Conclusions (1)

Ordinary OLS do not work well for
dichotomous dependent variables since

* ltis impossible to obtain normally distributed errors or
homoscedasticity, and since

*  The model predicts probabilities outside the interval [0-1]
The Logit model Is better

. Likelihood ratio tests statistic can be used to test nested
models analogous to the F-statistic

* Inlarge samples the chisquare distributed Wald statistic
[or the normally distributed t=SQRT(Wald)] will be able to
test single coefficients and provide confidence intervals

. There is no statistic similar to the coefficient of
determination
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Conclusions (2)

Coefficient of estimated models can be
interpreted by

1. Log-odds (direct interpretation)

2. Odds

3. 0Odds ratio

4. Probability (conditional effect plot)

* Non-linearity, case with influence, and
multicollinearity leads to the same kinds of
problems as in OLS regression (inaccurate or
uncertain parameter values)

» Discrimination leads to problems of uncertain

parameter values (large variance estimates)

« Diagnostic work is important

Fall 2004 © Erling Berge 2004 73

Fall 2009

37



