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Definitions:
• The probability that person no i shall have the 

value 1 on the variable Y will be written Pr(Yi =1). 
Then Pr(Yi ≠ 1) = 1 - Pr(Yi=1) 

• The odds that person no i shall have the value 1 
on the variable Y, here called Oi, is the ratio 
between two probabilities 

( ) ( )
( )

Pr 1
1

1 Pr 1 1
i i

i i
i i

y py
y p
=

= = =
− = −

O

Definitions I

Fall 2009 © Erling Berge 2009 4

Definitions II
Definitions:
• The LOGIT, Li , is the natural logarithm of 

the odds, Oi , for person no i:
Li = ln(Oi)

• The model assumes that Li is a linear 
function of the explanatory variables xj , 

• i.e.:
• Li = β0 + Σj βj xji , where j=1,..,K-1, and  i=1,..,n 
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Logistic regression: assumptions
• The model is correctly specified

• The logit is linear in its parameters
• All relevant variables are included
• No irrelevant variables are included

• x-variables are measured without error 
• Observations are independent
• No perfect multicollinearity
• No perfect discrimination
• Sufficiently large sample
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Assumptions that cannot be tested

• Model specification
• All relevant variables are included

• x-variables are measured without error 
• Observations are independent
Two will be tested automatically. 
If the model can be estimated there is
• No perfect multicollinearity and
• No perfect discrimination 
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample
• High degree of multicollinearity

– Leading to large standard errors (imprecise 
estimates)

– Multicollinearity is discovered and treated in the 
same way as in OLS regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise 

estimates)
– Will be discovered automatically by SPSS

Fall 2009 © Erling Berge 2009 8

Assumptions that can be tested

• Model specification
• logit is linear in the parameters
• no irrelevant variables are included

• Sufficiently large sample 
• What is “sufficiently large” depends on the number 

of different patterns in the sample and how cases 
are distributed across these

• Testing implies an assessment of whether  
statistical problems leads to departure 
from the assumptions
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LOGISTISK REGRESSION: TESTING (1)

Two tests are useful
• (1) The Likelihood ratio test 

– This can be used analogous to the F-
test

• (2) Wald test  
– The square root of this can be used 

analogous to the t-test
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LOGISTISK REGRESSION: TESTING (2)

• The LikeLihood Ratio test :
• The ratio between two Likelihoods equals the 

difference between two LogLikelihoods
• The difference between the LogLikelihood (LL) 

of two nested models, estimated on the same 
data, can be used to test which of two models 
fits the data best, just like the F-statistic is used 
in OLS regression

• The test can also be used for singe regression 
coefficients (single variables). In small samples 
it has better properties than the Wald statistic
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LOGISTISK REGRESSION: TESTING (3)

The LikeLihood Ratio test statistic 
• χ2

Η = -2[LL(model1) - LL(model2)]
will, if the null hypothesis of no difference 
between the two models is correct, be 
distributed approximately (for large n)  as 
the chi-square distribution with number of 
degrees of freedom equal to the difference 
in number of parameters in the two models 
(H)
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Example of a Likelihood Ratio test
• Model 1: just constant
• Model 2: constant plus one variable

• χ2
Η = -2[LL(model1) - LL(model2)]

= -2LL(model1) + 2LL(model2)
• Find the value of the ChiSquare and 

the number of degrees of freedom
• e.g.: LogLikelihood (mod1) = 209,212/(-2)
• LogLikelihood (mod2) = 195,267/(-2)

195,267
195,267
195,269
195,684
209,212

From
Tab 7.1:
-2 Log 

Likelihood
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LOGISTISK REGRESSION: TESTING (4)

The Wald test
• The Wald (or chisquare) test statistic provided 

by SPSS = t2 = (bk/ SE(bk))2 (where t is the t 
used by Hamilton) can be used for testing single 
parameters similarly to the t-statistic of the OLS 
regression

• If the null hypothesis is correct, t will (for large n)  
in logistic regression be approximately normally 
distributed

• If the null hypothesis is correct, the Wald statistic 
will (for large n) in logistic regression be 
approximately chisquare distributed with df=1
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Excerpt from Hamilton Table 7.2

5,649,18411,7681,3021,731Constant
8,784,000121,919,4642,173Hsc
3,347,00916,739,4651,208Contam

,847,06513,404,090-,166Educ
,955,00219,698,015-,046Lived

Exp(B)Sig.dfWaldS.E.BVariables

149,3825
149,3824
149,3823
149,4662
152,5341
209,2120

-2 Log likelihoodIterasjon
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Confidence interval for parameter estimates

• Can be constructed based on the fact that 
the square root of the Wald statistic 
approximately follows a normal distribution 
with 1 degree of freedom 

• bk - tα*SE(bk) < βk < bk + tα*SE(bk) 
where tα is a value taken from the table of 
the  normal distribution with level of 
significance equal to α
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Can be constructed based on the t-
distribution (1)

• If a table of the normal distribution is missing 
one may use the t-distribution since the t-
distribution is approximately normally 
distributed for large n-K (e.g. for n-K > 120)
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Excerpt from Hamilton Table 7.3

18,060,07113,2591,6032,894Constant

,108,02614,964,999-2,226nodad

,511,23611,406,566-,671kids

,950,9261,009,557-,052female

11,223,000122,508,5102,418hsc

3,604,00817,094,4811,282contam

,814,02714,887,093-,206educ

,954,00617,550,017-,047livedStep 1
Exp(B)Sig.dfWaldS.E.B
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More from Hamilton Table 7.3

-2,226-,671-,0522,4181,282-,206-,0472,894141,0495

-2,225-,671-,0522,4181,282-,206-,0472,893141,0494

-2,184-,662-,0502,4011,269-,204-,0462,859141,0543

-1,844-,580-,0372,2391,147-,187-,0412,538141,4822

-1,074-,365-,0151,764,782-,130-,0271,565147,0281Step1

-0,276209,212Step0

nodadkidsfemalehsc
conta

meduclivedConst

Coefficients
-2 Log 

likelihoodIteration
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Is the model in table 7.3 better than the 
model in table 7.2 ?

• LL(model in 7.3) = 141,049/(-2)
• LL(model in 7.2) = 149,382/(-2)

• χ2
Η = -2[LL(model 7.2) - LL(model 7.3)]

• Find χ2
Η value 

• Find H
• Look up the table of the chisquare

distribution 
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The model of the probability of 
observing y=1 for person i

[ ] ( )
1

0
1

exp( )1Pr( 1)
1 exp 1 exp( )

where the logit  is a linear function 

of the explanatory variables

i
i i

i i
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i j ji
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−

=

= = = =
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It is not easy to interpret the meaning of the β
coefficients just based on this formula
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The odds ratio

• The odds ratio, O, can  be interpreted as the 
relative effect of having one variable value 
rather than another 

• e.g. if xki = t+1 in Li’ and xki = t in Li
• O = Oi (Yi=1| Li’)/ Oi (Yi=1| Li)

= exp[Li’ ]/ exp[Li] 
= exp[βk]

• Why βk ?

Fall 2009 © Erling Berge 2009 22

The odds ratio : example I

• The Odds for answering yes = 

eb0+b1*Alder+b2*Kvinne+b3*E.utd+b4*Barn i HH

• The odds ratio for answering yes between women and men =

0 1 2 3 4
2

0 1 2 3 4

* *1 * . * _ _

* *0 * . * _ _

b b Alder b b E utd b Barn i HH
b

b b Alder b b E utd b Barn i HH

e e
e

+ + + +

+ + + + =

Remember the rules of power exponents
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The odds ratio : example II

• The Odds for answering yes given one 
year of extra education

( )0 1 2 3 4
3

0 1 2 3 4

* * * . 1 * _ _

* * * . * _ _

b b Alder b Kvinne b E utd b Barn i HH
b

b b Alder b Kvinne b E utd b Barn i HH

e e
e

+ + + + +

+ + + + =

Remember the rules of power exponents
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Example from Hamilton table 7.2
• What is the odds ratio for yes to closing 

the school from one year extra education?
• The odds ratio is the ratio of two odds 

where one odds is the odds for a person 
with one year extra education

0 1 2 3 4

0 1 2 3 4

2
2

2

* *( 1) * *

* * * *

*( 1)

*

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b Utdanning
b

b Utdanning

e
e
e e
e

+ + + + +

+ + + +

+

= =
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Example from Hamilton table 7.2 cont. 

• Odds ratio = Exp{b2} = exp(-0,166) = 0,847
• One extra year of education implies that the 

odds is reduced with a factor of 0.847
• One may also say that the odds has 

increased with a factor of 
100(0,847-1)% = -15,3% 

• Meaning that it has declined with 15,3% 
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Conditional Effect Plot
• Set all x-variables except xk to fixed values 

and enter these into the equation for the 
logit

• Plot Pr(Y=1) as a function of xk i.e. 
• P =1/(1+exp[-L]) = 1/(1+exp[-konst - bkxk])

for all reasonable values of xk ,
“konst” is the constant obtained by entering 
into the logit the fixed values of variables 
other than xk
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Excerpt from Hamilton Table 7.4

8,866,10112,6921,3302,182Constant

,16991,00,00,177,01715,696,725-1,731nodad

,30721,00,009,763,000121,591,4902,279hsc

,28101,00,003,664,00617,423,4771,299contam

12,954220,006,00,821,03414,509,093-,197educ

19,268081,001,00,961,01016,559,015-,040lived

Mean
Maximu

m
Minimu

mExp(B)Sig.dfWaldS.E.B

Logit: 

L = 2.182 -0.04*lived -0.197*educ +1.299*contam +2.279*hsc -1.731*nodad

Here we let ”lived” vary and set in reasonable values for other variables
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Conditional effect plot from Hamilton table 7.4 
(fig7.5): effect of living for a long time in town
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y=1/(1+exp(-(2.182-0.04x-0.197×12.95+1.299×0.28+2.279×0.31-1.731×0.17)))
y=1/(1+exp(-(2.182-0.04x-0.197×12.95+1.299×1+2.279×1-1.731×0)))
y=1/(1+exp(-(2.182-0.04x-0.197×12.95+1.299×0+2.279×0-1.731×1)))
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Conditional effect plot from Hamilton table 7.4 
(fig7.6): effect of pollution on own land
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Coefficients of determination
• Logistic regression does not provide measures 

comparable to the coefficient of determination in 
OLS regression

• Several measures analogous to R2 have been 
proposed

• They are often called pseudo R2

• Hamilton uses Aldrich and Nelson’s   
pseudo R2 = χ2/(χ2+n)
where χ2 = test statistic for the test of the whole 
model against a model with just a constant and 
n= the number of cases



Ref.: 
http://www.svt.ntnu.no/iss/Erling.Berge/

Fall 2009

© Erling Berge 2009 16

Fall 2009 © Erling Berge 2009 31

Some pseudo R2 in SPSS
• SPSS reports Cox and Snell, Nagelkerke, and in 

multinomial logistic regression also McFadden’s 
proposal for R2

• Aldrich and Nelson’s pseudo R2 can easily be 
computed by ourselves [pseudo R2 = χ2/(χ2+n)]

***McFadden
***Nagelkerke
***Cox and Snell

Pseudo R-Square
Model Summary

*********1

Nagelkerke
R Square

Cox & 
Snell R 
Square

-2 Log 
likelihoodStep
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Statistical problem: linearity of the logit
• Curvilinearity of the logit can give biased 

parameter estimates
• Scatter plot for y - x is not informative since y 

only has 2 values
• To test if the logit is linear in an x-variable one 

may do as follows
– Group the x variable
– For every group find average of y and compute the 

logit for this value
– Make a graph of the logits against the grouped x
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Y=”Closing school” vs. x= ”Years lived in town”

0,00 20,00 40,00 60,00 80,00 100,00

YEARS LIVED IN WILLIAMSTOWN

0,00

0,20

0,40

0,60

0,80

1,00

SC
HO

OL
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SH
OU

LD
 C
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SE

Scatter plot is not 
very informative
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Linearity in logit: example

-1,901-1,901-0,323-0,2410,36400,619Ln(p/(1-p))Logit

,13,13,42,44,59,50,65Mean (=p)
Within
group

22817101413CLOSEN 

131311227147OPENN

45+34-4423-3312-227-114-6<= 3

YEARS LIVED IN WILLIAMSTOWN (Banded)
SCHOOLS 
SHOULD 
CLOSE
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-3

-2

-1

0

1

ln
(b

/(1
-b

))

1 2 3 4 5 6 7

GroupedLived

GroupedLived 1 2 3 4 5 6 7

Chart

Is the  
logit
linear in 
”years 
lived in 
town”?
Maybe! 
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In case of curvilinearity the odds ratio is non-
constant

Assume the logit is curvilinear in education. Then the odds ratio for 
answering yes, adding one year of education, is:

( ) ( )

( ) ( )
( )

2
0 2

2
0 2

2
2 2

2
2

2

* * * . 1 * . 1

* * * . * .

* . 2 . 1 * 2 . 1
* 2 . 1

0* .

a k utd utd

a k utd utd

utd utd utd utd
utd utd

utd

b b Alder b Kvinne b E utd b E utd

b b Alder b Kvinne b E utd b E utd

b b E utd E utd b b E utd
b b E utd

b E utd

e
e

e e e
ee

+ + + + + +

+ + + +

+ + + + +
+ +

=

= =
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Statistical problems: influence

• Influence from outliers and unusual x-
values are just as problematic in logistic 
regression as in OLS regression

• Transformation of x-variables to symmetry 
will minimize the influence of extreme 
variable values

• Large residuals are indicators of large 
influence
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Influence: residuals
• There are several ways to standardize 

residuals
– ”Pearson residuals”
– ”Deviance residuals”

• Influence can be based on 
– Pearson residual 
– Deviance residual
– Leverage (potential for influence): i.e. the  

statistic hj
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Diagnostic graphs

Outlier plots can be based on plots of 
estimated probability of Yi=1 
(estimated Pi) against

• Delta B , Δ Bj , or 
• Delta Pearson Chisquare, Δ χ2

P(j) , or 
• Delta Deviance Chisquare, Δ χ2

D(j)
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SPSS output
• Cook's = delta B in Hamilton

– The logistic regression analogue of Cook's influence statistic. A 
measure of how much the residuals of all cases would change if 
a particular case were excluded from the calculation of the 
regression coefficients. 

• Leverage Value = h in Hamilton
– The relative influence of each observation on the model's fit. 

• DfBeta(s) is not used by Hamilton in logistic regression
– The difference in beta value is the change in the regression 

coefficient that results from the exclusion of a particular case. A 
value is computed for each term in the model, including the 
constant. 
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Delta B 
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SPSS output from ”Save” (1)

• Unstandardized Residuals
– The difference between an observed value 

and the value predicted by the model. 
• Logit Residual

ˆ;
ˆ ˆ(1 )

i
i i i i

i i

ee where e y π
π π

=  = −
−

%

πi is the probability that yi = 1; the “hat” means 
estimated value
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SPSS output from ”Save” (2)
• Standardized = Pearson residual

– The command ”standardized” will make SPSS write a variable 
called ZRE_1 nad labelled “Normalized residual”

– This is the same as the Pearson residual in Hamilton 
• Studentized = [SQRT(delta deviance chisquare)]

– The command ”Studentized” will make SPSS write a variable 
called SRE_1 and labelled “Standardized residual”

– This is the same as the square root of ”delta Deviance 
chisquare” in Hamilton, i.e. ”delta Deviance chisquare” = 
(SRE_1)2

• Deviance = Deviance residual
– The command ”Deviance” will make SPSS write a variable called 

DEV_1 and labelled “Deviance value”
– This is the same as the deviance residual in Hamilton 
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Computation of Δχ2
P(i)

• Based on the 
quantities provided by 
SPSS we can 
compute ”delta 
Pearson chisquare”

• Where it says rj in the 
formula we put in 
ZRE_1 and where it 
says hj we put in 
LEV_1

( )
2

2
( ) 1

j
P j

j

r
h

χΔ =
−
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Computation of Δχ2
D(i)

1. To find ”delta 
deviance 
chisquare” we 
square SRE_1

2. Alternatively we 
put in dj=DEV_1 
and hj=LEV_1 in 
the formula 

Based on the quantities provided by SPSS 
we can compute ”Delta Deviance Chisquare”

( )
2

2
( ) 1

j
D j

j

d
h

χΔ =
−

2
( ) _1* _1D j SRE SREχΔ =
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DeltaDevianceChisquare (with/CaseNO)
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DeltaDevianceChisquare (with/delta B)
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Delta Pearson Chisquare (with/CaseNO)
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Delta Pearson Chisquare (with/ delta B)
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-2,62-2,042,46SRE_1
-,97-,86,95RES_1
,41,34,64COO_1
,97,86,05PRE_1
,00,00,00nodad

1,001,00,00hsc
1,001,00,00contam

12,0012,0012,00educ
1,0040,0068,00lived

,00,001,00Y=close

Case
No
99

Case
No
65

Case
No
96Variables

6,894,146,07DeltaAvviksKjiKv
29,206,4718,34DeltaPearsonKjiKv

,14,16-,08DFB5_1
-,19-,17-,06DFB4_1
-,18-,15-,08DFB3_1
,02,01,02DFB2_1
,00,00,01DFB1_1

-,36,01-,32DFB0_1
-2,61-1,982,42DEV_1
-5,36-2,484,21ZRE_1

Case
No
99

Case
No
65

Case
No
96Variables

Cases with large influence



Ref.: 
http://www.svt.ntnu.no/iss/Erling.Berge/

Fall 2009

© Erling Berge 2009 26

Fall 2009 © Erling Berge 2009 51

From Cases to Patterns

• The figures shown previously are not 
identical to those you see in Hamilton 

• Hamilton has corrected for the effect 
of identical patterns 
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Influence from a shared pattern of 
x-variables

• In a logistic regression with few variables many 
cases will have the same value on all x-variables. 
Every combination of x-variable values is called a 
pattern

• When many cases have the same pattern, every 
case may have a small influence, but collectively 
they may have unusually large influence on 
parameter estimates

• Influential patterns in x-values can give biased 
parameter estimates 
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Influence: Patterns in x-values

• Predicted value, and hence the residual will 
be the same for all cases with the same 
pattern

• Influence from pattern j can be found by 
means of
– The frequency of the pattern 
– Pearson residual
– Deviance residual
– Leverage: i.e. the statistic hj
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Finding X-pattern by means of  SPSS
• In the ”Data” – menu find the command ”Identify 

duplicate cases”
• Mark the x-variables that are used in the model 

and move them to ”Define matching cases by”
• Cross for ”Sequential count of matching cases in 

each group” and ”Display frequencies for created 
variables”

• This produces two new variables. One,  
”MatchSequence”, numbers cases sequentially 1, 
2, … where several patterns are identical. If the 
pattern is unique this variable has the value 0. 

• The other variable, ”Primary…”, has the value 0 for 
duplicates and 1 for unique patterns
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X-patterns in SPSS; Hamilton p238-242

100,0100,0153Total
100,086,386,3132Primary Case

13,713,713,721Duplicate Case

Cumulative
Percent

Valid 
PercentPercentFrequency

100,0100,0153Total
100,02,62,643 [4 patterns with 3 cases]
97,411,111,1172 [17–4=13 patterns with 2 cases]

86,311,111,1171 [17 patterns with 2 or 3 cases]

75,275,275,21150 [115 patterns with 1 case]

Cumulative
Percent

Valid 
PercentPercentFrequency

Sequential count of
matching cases
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Hamilton table 7.6 Symbols

ˆ
jP

2
Pχ

Leverage for pattern jhj

Leverage for case ihi

Deviance Chisquare statistic

Deviance residual for pattern jdj

Pearson Chisquare statistic 

Pearson residual for pattern jrj

Sum of y-values for cases with pattern j (= # cases with pattern j 
and y=1)

Yj

Predicted probability of Y=1 for case with pattern j

# cases with the pattern j (m>=1)mj

# unique patterns of x-values in the data (J<=n)J

2
Dχ
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New values for Δχ2
P(i) and Δχ2

D(i)

• By ”Compute” one may calculate the 
Pearson residual (equation 7.19 in 
Hamilton)  and delta Pearson chisquare
(equation 7.24 in Hamilton) once more. 
This will provide the correct values

• The same applies for deviance residual 
(equation 7.21) and delta deviance 
chisquare (equation 7.25a)
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Leverage and residuals (1)
• Leverage of a pattern is obtained as number of 

cases with the pattern times the leverage of a 
case with this pattern. The leverage of a case is 
the same as in OLS regression

• hj = mj*hi
• Pearson residual can be found from 

( )
ˆ

ˆ ˆ1

j j j
j

j j j

Y m P
r

m P P

−
=

−
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Leverage and residuals (2)

• Deviance residual can be found from

( ) ( )
2 ln lnˆ ˆ1

j j j
j j j j

j j j j

Y m Y
d Y m Y

m P m P

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ −⎪ ⎪⎢ ⎥⎜ ⎟= ± + −⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
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Two Chi-square statistics

• Pearson Chi-square 
statistics

• Deviance Chi-square 
statistics

• Equations are the 
same for both cases 
and patterns

2 2

1

J

P j
j

rχ
=

= ∑
2 2

1

J

D j
j

dχ
=

= ∑
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The Chisquare statistics

Both Chisquare statistics:
1. Pearson-Chisquare χ2

P  and
2. Deviance-Chisquare χ2

D

• Can be read as a test of the null 
hypothesis of no difference between the 
estimated model and a “saturated 
model”, that is a model with as many 
parameters as there are cases/ patterns
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Large values of measures of influence

• Measures of influence based on changes 
(Δ) in the statistic/ parameter value due to 
excluded cases with pattern j 

– ΔBj “delta B” - analogue to Cook’s D

– Δχ2
P(i) “delta Pearson-Chisquare”

– Δχ2
D(i) “delta Deviance-Chisquare”
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What is a large value of Δχ2
P(i) and Δχ2

D(i)

• Both Δχ2
P(i) and Δχ2

D(i) measure how badly the 
model fits the pattern j. Large values indicates 
that the model would fit the data much better if all 
cases with this pattern were excluded

• Since both measures are distributed 
asymptotically as the chisquare distribution, 
values larger than 4 indicate that a pattern affects 
the estimated parameters “significantly”
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ΔBj “delta B”
• Measures the 

standardized 
change in the 
estimated 
parameters (bk) 
that obtain when 
all cases with a 
given pattern j 
are excluded

( )
2

2
1

j j
j

j

r h
B

h
Δ =

−
Larger values means larger 
influence

ΔBj >= 1 must in any case 
be seen as ”large influence”
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delta B (with caseNO)
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Δχ2
P(i) “Delta Pearson Chisquare”

• Measures the 
reduction in 
Pearson χ2

that obtains 
from excluding 
all cases with 
pattern  j

( )
2

2
( ) 1

j
P j

j

r
h

χΔ =
−
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Delta Pearson Chisquare (with delta B) 
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Δχ2
D(i) “Delta Deviance Chisquare”

• Measures changes in 
deviance that obtains 
from excluding all 
cases with pattern j

• This is equivalent to
( )

2
2

( ) 1
j

D j
j

d
h

χΔ =
−

K K(j)χ ⎡ ⎤Δ = − −⎣ ⎦
2
( ) 2 LLD j LL

LLK is the LogLikelihood of a model with K parameters 
estimated on the whole sample and LLK(j) is from the estimate 
of the same model when all cases with pattern j are excluded
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Delta Deviance Chisquare (with delta B)
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Influence of excluded cases/patterns 

-136,124-135,425-142,6522*LL(modell) 
2,5302,5752,182Constant

-1,658-1,889-1,731nodad
2,3472,4922,279hsc
1,3821,4901,299contam
-,214-,224-,197educ
-,052-,045-,040lived

Excluding 
case 96

Δχ2P(i) =29,20

Excluding 
case 99

Δχ2P(i) =18,34

SampleVariables in the 
model

Logit coefficient
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Influence of excluded cases/patterns 
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y=1/(1+exp(-(2.18-0.04x-0.2×13+1.3×0.28+2.28×0.31-1.73×0.17)))
y=1/(1+exp(-(2.53-0.05x-0.21×13+1.38×0.28+2.35×0.31-1.65×0.17)))
y=1/(1+exp(-(2.58-0.04x-0.22×13+1.49×0.28+2.49×0.31-1.89×0.17)))
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Conclusions (1)
Ordinary OLS do not work well for 
dichotomous dependent variables since
• It is impossible to obtain normally distributed errors or 

homoscedasticity, and since
• The model predicts probabilities outside the interval [0-1]
The Logit model Is better
• Likelihood ratio tests statistic can be used to test nested 

models analogous to the F-statistic
• In large samples the chisquare distributed Wald statistic 

[or the normally distributed t=SQRT(Wald)] will be able to 
test single coefficients and provide confidence intervals

• There is no statistic similar to the coefficient of 
determination
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Conclusions (2)
• Coefficient of estimated models can be 

interpreted by
1. Log-odds (direct interpretation)
2. Odds
3. Odds ratio
4. Probability (conditional effect plot)

• Non-linearity, case with influence, and 
multicollinearity leads to the same kinds of 
problems as in OLS regression (inaccurate or 
uncertain parameter values)

• Discrimination leads to problems of uncertain 
parameter values (large variance estimates)

• Diagnostic work is important


