SOS3003 Applied data analysis for social science Lecture note 09-2009

Erling Berge Department of sociology and political science NTNU

Fall 2009

© Erling Berge 2009

Literature

 Logistic regression II Hamilton Ch 7 p217-242

Fall 2009

© Erling Berge 2009

2

Definitions I

Definitions:

- The probability that person no i shall have the value 1 on the variable Y will be written Pr(Y_i =1). Then Pr(Y_i ≠ 1) = 1 - Pr(Y_i=1)
- The odds that person no i shall have the value 1 on the variable Y, here called O_i, is the ratio between two probabilities

$$O_i(y_i = 1) = \frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)} = \frac{p_i}{1 - p_i}$$

© Erling Berge 2009

Fall 2009

Definitions II

Definitions:

- The LOGIT, L_i, is the natural logarithm of the odds, O_i, for person no i: L_i = ln(O_i)
- The model assumes that L_i is a linear function of the explanatory variables x_i,
- i.e.:
- + L_i = β_0 + $\Sigma_j \beta_j x_{ji}$, where j=1,...,K-1, and i=1,...,n

Fall 2009

© Erling Berge 2009

4

Logistic regression: assumptions

- The model is correctly specified
 - The logit is linear in its parameters
 - All relevant variables are included
 - No irrelevant variables are included
- x-variables are measured without error
- · Observations are independent
- No perfect multicollinearity
- No perfect discrimination
- Sufficiently large sample

Fall 2009

© Erling Berge 2009

Assumptions that cannot be tested

- Model specification
 - All relevant variables are included
- · x-variables are measured without error
- Observations are independent

Two will be tested automatically.

If the model can be estimated there is

- No perfect multicollinearity and
- No perfect discrimination

Fall 2009

© Erling Berge 2009

6

LOGISTIC REGRESSION Statistical problems may be due to

- Too small a sample
- High degree of multicollinearity
 - Leading to large standard errors (imprecise estimates)
 - Multicollinearity is discovered and treated in the same way as in OLS regression
- High degree of **discrimination** (or separation)
 - Leading to large standard errors (imprecise estimates)
 - Will be discovered automatically by SPSS

Fall 2009

© Erling Berge 2009

Assumptions that can be tested

- Model specification
 - · logit is linear in the parameters
 - no irrelevant variables are included
- · Sufficiently large sample
 - What is "sufficiently large" depends on the number of different patterns in the sample and how cases are distributed across these
- Testing implies an assessment of whether statistical problems leads to departure from the assumptions

Fall 2009

© Erling Berge 2009

8

LOGISTISK REGRESSION: TESTING (1)

Two tests are useful

- (1) The Likelihood ratio test
 - This can be used analogous to the Ftest
- (2) Wald test
 - The square root of this can be used analogous to the t-test

Fall 2009

© Erling Berge 2009

9

LOGISTISK REGRESSION: TESTING (2)

- The LikeLihood Ratio test :
- The ratio between two Likelihoods equals the difference between two LogLikelihoods
- The difference between the LogLikelihood (*LL*) of two nested models, estimated on the same data, can be used to test which of two models fits the data best, just like the F-statistic is used in OLS regression
- The test can also be used for singe regression coefficients (single variables). In small samples it has better properties than the Wald statistic

Fall 2009

© Erling Berge 2009

LOGISTISK REGRESSION: TESTING (3)

The LikeLihood Ratio test statistic

• $\chi^2_{\rm H} = -2[\pounds\pounds(\text{model1}) - \pounds\pounds(\text{model2})]$ will, if the null hypothesis of no difference between the two models is correct, be distributed approximately (for large n) as the chi-square distribution with number of degrees of freedom equal to the difference in number of parameters in the two models (H)

Fall 2009

© Erling Berge 2009

11

Example of a Likelihood Ratio test

- Model 1: just constant
- Model 2: constant plus one variable
- χ²_H = -2[*LL*(model1) *LL*(model2)]
 = -2*LL*(model1) + 2*LL*(model2)
- Find the value of the ChiSquare and the number of degrees of freedom
- e.g.: LogLikelihood (mod1) = 209,212/(-2)
- LogLikelihood (mod2) = 195,267/(-2)

Fall 2009

© Erling Berge 2009

From Tab 7.1: -2 Log Likelihood 209,212 195,684 195,269 195,267 195,267

LOGISTISK REGRESSION: TESTING (4)

The Wald test

- The Wald (or chisquare) test statistic provided by SPSS = $t^2 = (b_k / SE(b_k))^2$ (where t is the t used by Hamilton) can be used for testing single parameters similarly to the t-statistic of the OLS regression
- If the null hypothesis is correct, t will (for large n) in logistic regression be approximately normally distributed
- If the null hypothesis is correct, the Wald statistic will (for large n) in logistic regression be approximately chisquare distributed with df=1

Fall 2009

© Erling Berge 2009

13

Iterasjon	-2 Log likelihood					
0	209,212					
1	152,534					
2	149,466					
3	149,382					
4	149,382					
5	149,382					
Variables	В	S.E.	Wald	df	Sig.	Exp(B)
Lived	-,046	,015	9,698	1	,002	,955
Educ	-,166	,090	3,404	1	,065	,847
Contam	1,208	,465	6,739	1	,009	3,347
Hsc	2,173	,464	21,919	1	,000	8,784
Constant	1,731	1,302	1,768	1	,184	5,649
Fall 2009	© Erling B	14				

Excerpt from Hamilton Table 7.2

Confidence interval for parameter estimates

- Can be constructed based on the fact that the square root of the Wald statistic approximately follows a normal distribution with 1 degree of freedom
- $b_k t_{\alpha}^*SE(b_k) < \beta_k < b_k + t_{\alpha}^*SE(b_k)$ where t_{α} is a value taken from the table of the **normal distribution** with level of significance equal to α

Fall 2009

© Erling Berge 2009

15

Can be constructed based on the tdistribution (1)

 If a table of the normal distribution is missing one may use the t-distribution since the tdistribution is approximately normally distributed for large n-K (e.g. for n-K > 120)

Fall 2009

© Erling Berge 2009

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	lived	-,047	,017	7,550	1	,006	,954
	educ	-,206	,093	4,887	1	,027	,814
	contam	1,282	,481	7,094	1	,008	3,604
	hsc	2,418	,510	22,508	1	,000	11,223
	female	-,052	,557	,009	1	,926	,950
	kids	-,671	,566	1,406	1	,236	,511
	nodad	-2,226	,999	4,964	1	,026	,108
	Constant	2,894	1,603	3,259	1	,071	18,060

Excerpt from Hamilton Table 7.3

Fall 2009

© Erling Berge 2009

17

More from Hamilton Table 7.3

Iteratio	on	-2 Log likelihood	Coefficients							
	1		Const	lived	educ	conta m	hsc	female	kids	nodad
Step0		209,212	-0,276							
Step1	1	147,028	1,565	-,027	-,130	,782	1,764	-,015	-,365	-1,074
	2	141,482	2,538	-,041	-,187	1,147	2,239	-,037	-,580	-1,844
	3	141,054	2,859	-,046	-,204	1,269	2,401	-,050	-,662	-2,184
	4	141,049	2,893	-,047	-,206	1,282	2,418	-,052	-,671	-2,225
	5	141,049	2,894	-,047	-,206	1,282	2,418	-,052	-,671	-2,226

Fall 2009

© Erling Berge 2009

Is the model in table 7.3 better than the model in table 7.2 ?

- LL(model in 7.3) = 141,049/(-2)
- LL(model in 7.2) = 149,382/(-2)
- $\chi^{2}_{H} = -2[\text{LL}(\text{model 7.2}) \text{LL}(\text{model 7.3})]$
- Find $\chi^{_{\rm H}}_{_{\rm H}}$ value
- Find H
- Look up the table of the chisquare distribution

Fall 2009

© Erling Berge 2009

The model of the probability of observing y=1 for person i

$$\Pr(y_i = 1) = E[y_i | x] = \frac{1}{1 + \exp(-L_i)} = \frac{\exp(L_i)}{1 + \exp(L_i)}$$

where the logit $L_i = \beta_0 + \sum_{j=1}^{K-1} \beta_j X_{ji}$ is a linear function
of the explanatory variables

It is not easy to interpret the meaning of the β coefficients just based on this formula

Fall 2009

© Erling Berge 2009

20

The odds ratio

- The odds ratio, **O**, can be interpreted as the relative effect of having one variable value rather than another
- e.g. if x_{ki} = t+1 in L_i ' and x_{ki} = t in L_i
- $\mathbf{O} = O_i (Y_i=1|L_i')/O_i (Y_i=1|L_i)$ = exp[L_i']/ exp[L_i] = exp[β_k]
- Why β_k ?

Fall 2009

© Erling Berge 2009

21

The odds ratio : example I

- The Odds for answering yes =
 e<sup>b₀+b₁*Alder+b₂*Kvinne+b₃*E.utd+b₄*Barn i HH
 </sup>
- The odds ratio for answering yes between women and men =

$$\frac{e^{b_0+b_1*Alder+b_2*1+b_3*E.utd+b_4*Barn_i_HH}}{e^{b_0+b_1*Alder+b_2*0+b_3*E.utd+b_4*Barn_i_HH}} = e^{b_2}$$

Remember the rules of power exponents

Fall 2009

© Erling Berge 2009

The odds ratio : example II

 The Odds for answering yes given one year of extra education

$$\frac{e^{b_0+b_1*Alder+b_2*Kvinne+b_3*(E.utd+1)+b_4*Barn_i_HH}}{e^{b_0+b_1*Alder+b_2*Kvinne+b_3*E.utd+b_4*Barn_i_HH}} = e^{b_3}$$

Remember the rules of power exponents

Fall 2009

© Erling Berge 2009

23

Example from Hamilton table 7.2

- What is the odds ratio for yes to closing the school from one year extra education?
- The odds ratio is the ratio of two odds where one odds is the odds for a person with one year extra education

 $e^{b_0+b_1*\mathring{A}rBuddIByen+b_2*(Utdanning+1)+b_3*UreiningEigEigedom+b_4*MangeHSCmøter}$

$$=\frac{e^{b_0+b_1*\mathring{A}rBuddIByen+b_2*Utdanning+b_3*UreiningEigEigedom+b_4*MangeHSCmøter}}{e^{b_2*(Utdanning+1)}} = e^{b_2}$$
Fall 2009 © Erling Berge 2009 24

Example from Hamilton table 7.2 cont.

- Odds ratio = Exp{b2} = exp(-0,166) = 0,847
- One extra year of education implies that the odds is reduced with a factor of 0.847
- One may also say that the odds has increased with a factor of 100(0,847-1)% = -15,3%
- Meaning that it has declined with 15,3%

Fall 2009

© Erling Berge 2009

Conditional Effect Plot

- Set all x-variables except x_k to fixed values and enter these into the equation for the logit
- Plot Pr(Y=1) as a function of x_k i.e.
- P =1/(1+exp[-L]) = 1/(1+exp[-konst b_kx_k]) for all reasonable values of x_k ,

"konst" is the constant obtained by entering into the logit the fixed values of variables other than $\boldsymbol{x}_{\boldsymbol{k}}$

Fall 2009

© Erling Berge 2009

26

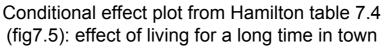
	в	S.E.	Wald	df	Sig.	Exp(B)	Minimu m	Maximu m	Mean
lived	-,040	,015	6,559	1	,010	,961	1,00	81,00	19,2680
educ	-,197	,093	4,509	1	,034	,821	6,00	20,00	12,9542
contam	1,299	,477	7,423	1	,006	3,664	,00	1,00	,2810
hsc	2,279	,490	21,591	1	,000	9,763	,00	1,00	,3072
nodad	-1,731	,725	5,696	1	,017	,177	,00	1,00	,1699
Constant	2,182	1,330	2,692	1	,101	8,866			

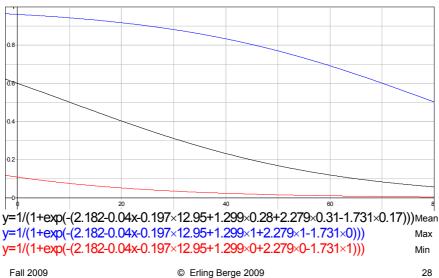
Excerpt from Hamilton Table 7.4

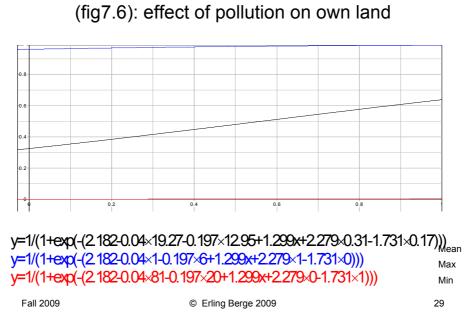
Logit:

L = 2.182 -0.04*lived -0.197*educ +1.299*contam +2.279*hsc -1.731*nodad

Here we let "lived" vary and set in reasonable values for other variables Fall 2009 © Erling Berge 2009 27







Conditional effect plot from Hamilton table 7.4

Coefficients of determination

- Logistic regression does not provide measures comparable to the coefficient of determination in OLS regression
- Several measures analogous to R² have been proposed
- They are often called pseudo R²
- Hamilton uses Aldrich and Nelson's

pseudo R² = $\chi^2/(\chi^2+n)$ where χ^2 = test statistic for the test of the whole model against a model with just a constant and n= the number of cases

Fall 2009

© Erling Berge 2009

Some pseudo R² in SPSS

- SPSS reports Cox and Snell, Nagelkerke, and in multinomial logistic regression also McFadden's proposal for R²
- Aldrich and Nelson's pseudo R² can easily be computed by ourselves [pseudo R² = χ²/(χ²+n)]

N	lodel Summ	ary			
		Cox &		Pseudo R-Square	
	-2 Log	Snell R	Nagelkerke	Cox and Snell	***
Step	likelihood	Square	R Square	Nagelkerke	***
1	***	***	***	McFadden	***

Fall 2009

© Erling Berge 2009

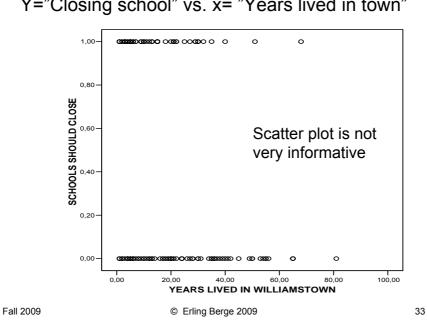
31

Statistical problem: linearity of the logit

- Curvilinearity of the logit can give biased parameter estimates
- Scatter plot for y x is not informative since y only has 2 values
- To test if the logit is linear in an x-variable one may do as follows
 - Group the x variable
 - For every group find average of y and compute the logit for this value
 - Make a graph of the logits against the grouped x

Fall 2009

© Erling Berge 2009



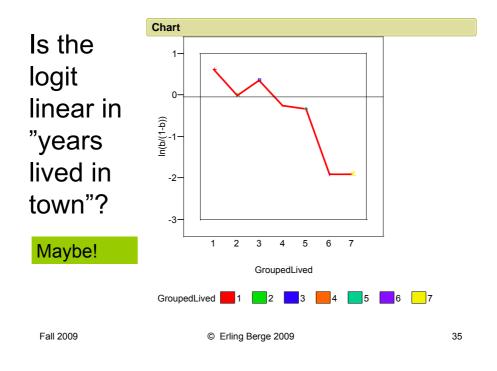
Y="Closing school" vs. x= "Years lived in town"

Linearity in logit: example

		YEARS	YEARS LIVED IN WILLIAMSTOWN (Banded)								
	SCHOOLS SHOULD		4-6	7-11	12-22	23-33	34-44	45+			
CLOSE											
N	OPEN	7	14	7	22	11	13	13			
N	CLOSE	13	14	10	17	8	2	2			
Within group	Mean (=p)	,65	,50	,59	,44	,42	,13	,13			
Logit	Ln(p/(1-p))	0,619	0	0,364	-0,241	-0,323	-1,901	-1,901			

Fall 2009

© Erling Berge 2009



In case of curvilinearity the odds ratio is nonconstant

Assume the logit is curvilinear in education. Then the odds ratio for answering yes, adding one year of education, is:

$$\frac{e^{b_0+b_a*Alder+b_k*Kvinne+b_{udd}*(E.utd+1)+b_{udd2}*(E.utd+1)^2}}{e^{b_0+b_a*Alder+b_k*Kvinne+b_{udd}*E.utd+b_{udd2}*E.utd^2}} = \frac{e^{b_0+b_a*Alder+b_k*Kvinne+b_{udd}*E.utd+b_{udd2}*E.utd^2}}{e^{b_{udd}+b_{udd2}*(2E.utd+1)}} = \frac{e^{b_{udd}+b_{udd2}*(2E.utd+1)}}{e^0} = e^{b_{udd}+b_{udd2}*(2E.utd+1)}$$

Fall 2009

© Erling Berge 2009

Statistical problems: influence

- Influence from outliers and unusual xvalues are just as problematic in logistic regression as in OLS regression
- Transformation of x-variables to symmetry will minimize the influence of extreme variable values
- Large residuals are indicators of large influence

Fall 2009	© Erling Berge 2009

Influence: residuals

- There are several ways to standardize residuals
 - "Pearson residuals"
 - "Deviance residuals"
- · Influence can be based on
 - Pearson residual
 - Deviance residual
 - Leverage (potential for influence): i.e. the statistic $\mathbf{h}_{\mathbf{j}}$

Fall 2009

© Erling Berge 2009

38

Diagnostic graphs

Outlier plots can be based on plots of estimated probability of $Y_i=1$ (estimated P_i) against

- Delta B , Δ B_{i} , or
- Delta Pearson Chisquare, $\Delta \; \chi^2_{\; \text{P(i)}}$, or
- Delta Deviance Chisquare, $\Delta \chi^2_{D(i)}$

Fall 2009

© Erling Berge 2009

39

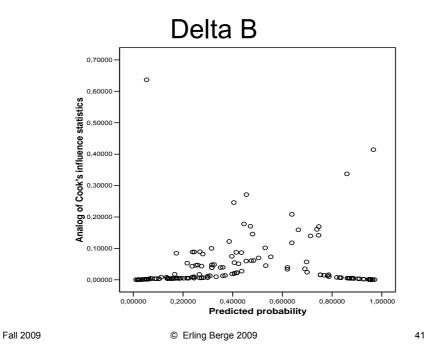
SPSS output

• Cook's = delta B in Hamilton

- The logistic regression analogue of Cook's influence statistic. A measure of how much the residuals of all cases would change if a particular case were excluded from the calculation of the regression coefficients.
- Leverage Value = h in Hamilton
 - The relative influence of each observation on the model's fit.
- DfBeta(s) is not used by Hamilton in logistic regression
 - The difference in beta value is the change in the regression coefficient that results from the exclusion of a particular case. A value is computed for each term in the model, including the constant.

Fall 2009

© Erling Berge 2009



SPSS output from "Save" (1)

Unstandardized Residuals

- The difference between an observed value and the value predicted by the model.
- Logit Residual

$$\tilde{e}_i = \frac{e_i}{\hat{\pi}_i(1 - \hat{\pi}_i)}; where \ e_i = y_i - \hat{\pi}_i$$

 π_i is the probability that $y_i = 1$; the "hat" means estimated value

 Fall 2009
 © Erling Berge 2009
 42

SPSS output from "Save" (2)

• Standardized = Pearson residual

- The command "standardized" will make SPSS write a variable called ZRE_1 nad labelled "Normalized residual"
- This is the same as the Pearson residual in Hamilton
- Studentized = [SQRT(delta deviance chisquare)]
 - The command "Studentized" will make SPSS write a variable called SRE_1 and labelled "Standardized residual"
 - This is the same as the square root of "delta Deviance chisquare" in Hamilton, i.e. "delta Deviance chisquare" = (SRE_1)²
- Deviance = Deviance residual
 - The command "Deviance" will make SPSS write a variable called DEV_1 and labelled "Deviance value"
 - This is the same as the deviance residual in Hamilton

Fall 2009

٠

© Erling Berge 2009

43

Computation of $\Delta \chi^2_{P(i)}$

 Based on the quantities provided by SPSS we can compute "delta Pearson chisquare"

$$\Delta \chi^2_{P(j)} = \frac{r_j^2}{\left(1 - h_j\right)}$$

 Where it says r_j in the formula we put in ZRE_1 and where it says h_j we put in LEV_1

Fall 2009

© Erling Berge 2009

Computation of $\Delta\chi^2_{\text{ D(i)}}$

Based on the quantities provided by SPSS we can compute "Delta Deviance Chisquare"

 To find "delta deviance chisquare" we square SRE_1

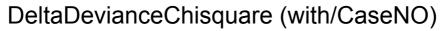
$$\Delta \chi^2_{D(j)} = SRE_1 * SRE_1$$

45

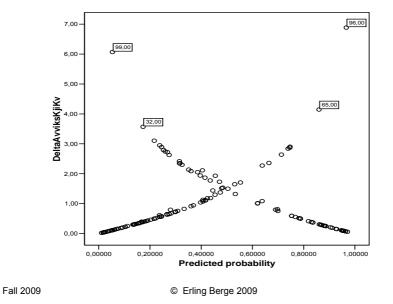
2. Alternatively we put in d_i=DEV_1 $\Delta \chi$ and h_i=LEV_1 in the formula

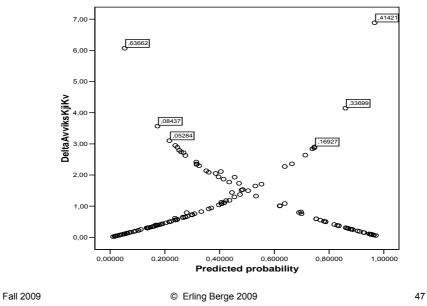
$$\chi^{2}_{D(j)} = \frac{d^{2}_{j}}{(1-h)^{2}}$$

Fall 2009



© Erling Berge 2009

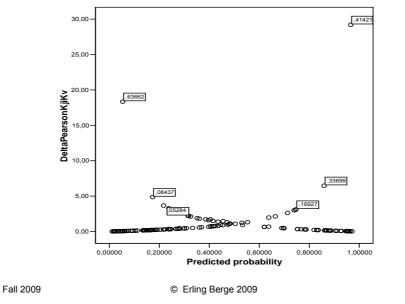




Delta Pearson Chisquare (with/CaseNO)



Delta Pearson Chisquare (with/ delta B)



Cases with large influence

	Case	Case	Case
	No	No	No
Variables	96	65	99
Y=close	1,00	,00	,00
lived	68,00	40,00	1,00
educ	12,00	12,00	12,00
contam	,00	1,00	1,00
hsc	,00	1,00	1,00
nodad	,00	,00	,00
PRE_1	,05	,86	,97
C00_1	,64	,34	,41
RES_1	,95	-,86	-,97
SRE_1	2,46	-2,04	-2,62

	Case	Case	Case
	No	No	No
Variables	96	65	99
ZRE_1	4,21	-2,48	-5,36
DEV_1	2,42	-1,98	-2,61
DFB0_1	-,32	,01	-,36
DFB1_1	,01	,00	,00
DFB2_1	,02	,01	,02
DFB3_1	-,08	-,15	-,18
DFB4_1	-,06	-,17	-,19
DFB5_1	-,08	,16	,14
DeltaPearsonKjiKv	18,34	6,47	29,20
DeltaAvviksKjiKv	6,07	4,14	6,89

Fall 2009

© Erling Berge 2009

50

From Cases to Patterns

- The figures shown previously are not identical to those you see in Hamilton
- Hamilton has corrected for the effect of identical patterns

Fall 2009

© Erling Berge 2009

Influence from a shared pattern of x-variables

- In a logistic regression with few variables many cases will have the same value on all x-variables. Every combination of x-variable values is called a pattern
- When many cases have the same pattern, every case may have a small influence, but collectively they may have unusually large influence on parameter estimates
- Influential patterns in x-values can give biased parameter estimates

Fall 2009

© Erling Berge 2009

52

Influence: Patterns in x-values

- Predicted value, and hence the residual will be the same for all cases with the same pattern
- Influence from pattern j can be found by means of
 - The frequency of the pattern
 - Pearson residual
 - Deviance residual
 - Leverage: i.e. the statistic h_i

Fall 2009

© Erling Berge 2009

53

Finding X-pattern by means of SPSS

- In the "Data" menu find the command "Identify duplicate cases"
- Mark the x-variables that are used in the model and move them to "Define matching cases by"
- Cross for "Sequential count of matching cases in each group" and "Display frequencies for created variables"
- This produces two new variables. One, "MatchSequence", numbers cases sequentially 1, 2, ... where several patterns are identical. If the pattern is unique this variable has the value 0.
- The other variable, "Primary...", has the value 0 for duplicates and 1 for unique patterns

Fall 2009

© Erling Berge 2009

	Frequency	Percent	Valid Percent	Cumulative Percent
Duplicate Case	21	13,7	13,7	13,7
Primary Case	132	86,3	86,3	100,0
Total	153	100,0	100,0	
Sequential count of matching cases	Frequency	Percent	Valid Percent	Cumulative Percent
0 [115 patterns with 1 case]	115	75,2	75,2	75,2
1 [17 patterns with 2 or 3 cases]	17	11,1	11,1	86,3
2 [17–4=13 patterns with 2 cases]	17	11,1	11,1	97,4
3 [4 patterns with 3 cases]	4	2,6	2,6	100,0
Total	153	100,0	100,0	

X-patterns in SPSS; Hamilton p238-242

Fall 2009

© Erling Berge 2009

55

Hamilton table 7.6 Symbols

	-	
J	# unique patterns of x-values in the data (J<=n)	
m _i	# cases with the pattern j (m>=1)	
\hat{P}_i	Predicted probability of Y=1 for case with pattern j	
Y _j	Sum of y-values for cases with pattern j (= # cases with pattern and y=1)	٦j
r _i	Pearson residual for pattern j	
χ^2_P	Pearson Chisquare statistic	
d _i	Deviance residual for pattern j	
χ^2_D	Deviance Chisquare statistic	
h _i	Leverage for case i	
h _i	Leverage for pattern j	
Fall 2009	© Erling Berge 2009	56

New values for $\Delta \chi^2_{P(i)}$ and $\Delta \chi^2_{D(i)}$

- By "Compute" one may calculate the Pearson residual (equation 7.19 in Hamilton) and delta Pearson chisquare (equation 7.24 in Hamilton) once more. This will provide the correct values
- The same applies for deviance residual (equation 7.21) and delta deviance chisquare (equation 7.25a)

Fall 2009

© Erling Berge 2009

Leverage and residuals (1)

- Leverage of a pattern is obtained as number of cases with the pattern times the leverage of a case with this pattern. The leverage of a case is the same as in OLS regression
- $h_j = m_j^* h_i$
- Pearson residual can be found from

$$r_{j} = \frac{Y_{j} - m_{j}\hat{P}_{j}}{\sqrt{m_{j}\hat{P}_{j}\left(1 - \hat{P}_{j}\right)}}$$

Fall 2009

© Erling Berge 2009

58

Leverage and residuals (2)

• Deviance residual can be found from

$$d_{j} = \pm \sqrt{\left\{2\left[Y_{j}\ln\left(\frac{Y_{j}}{m_{j}\hat{P}_{j}}\right) + \left(m_{j} - Y_{j}\right)\ln\left(\frac{m_{j} - Y_{j}}{m_{j}\left(1 - \hat{P}_{j}\right)}\right)\right]\right\}}$$

Fall 2009

© Erling Berge 2009

Two Chi-square statistics

- Pearson Chi-square statistics
- Deviance Chi-square statistics

same for both cases

· Equations are the

and patterns

$$\chi_P^2 = \sum_{j=1}^J r_j^2$$

 $\chi_D^2 = \sum_{j=1}^J d_j^2$

Fall 2009

© Erling Berge 2009

60

The Chisquare statistics

Both Chisquare statistics:

- 1. Pearson-Chisquare $\chi^2_{\,\mathsf{P}}$ and
- 2. Deviance-Chisquare χ^2_{D}
- Can be read as a test of the null hypothesis of no difference between the estimated model and a "saturated model", that is a model with as many parameters as there are cases/ patterns

Fall 2009

© Erling Berge 2009

Large values of measures of influence

- Measures of influence based on changes

 (Δ) in the statistic/ parameter value due to
 excluded cases with pattern j
 - $\Delta B_{\rm j}$ "delta B" analogue to Cook's D
 - $\Delta \chi^2_{P(i)}$ "delta Pearson-Chisquare"
 - $-\Delta\chi^2_{D(i)}$ "delta Deviance-Chisquare"

Fall 2009

© Erling Berge 2009

62

What is a large value of $\Delta \chi^2_{P(i)}$ and $\Delta \chi^2_{D(i)}$

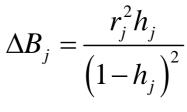
- Both $\Delta \chi^2_{P(i)}$ and $\Delta \chi^2_{D(i)}$ measure how badly the model fits the pattern j. Large values indicates that the model would fit the data much better if all cases with this pattern were excluded
- Since both measures are distributed asymptotically as the chisquare distribution, values larger than 4 indicate that a pattern affects the estimated parameters "significantly"

Fall 2009

© Erling Berge 2009

63

 Measures the standardized change in the estimated parameters (b_k) that obtain when all cases with a given pattern j are excluded

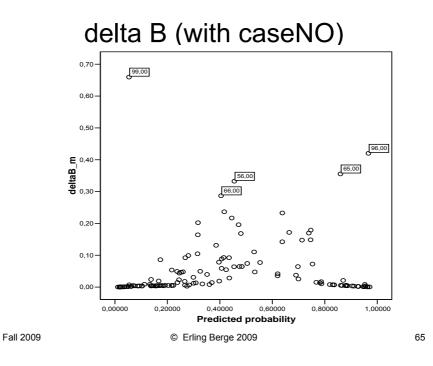


Larger values means larger influence

 $\Delta Bj \ge 1$ must in any case be seen as "large influence"

Fall 2009

© Erling Berge 2009



 $\Delta \chi^2_{P(i)}$ "Delta Pearson Chisquare"

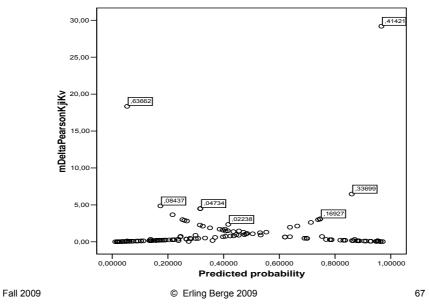
Measures the reduction in Pearson χ² that obtains from excluding all cases with pattern j

$$\Delta \chi_{P(j)}^2 = \frac{r_j^2}{\left(1 - h_j\right)}$$

Fall 2009

© Erling Berge 2009

Delta Pearson Chisquare (with delta B)



 $\Delta \chi^2_{D(i)}$ "Delta Deviance Chisquare"

 Measures changes in deviance that obtains from excluding all cases with pattern j

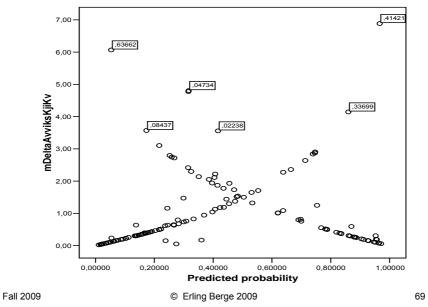
$$\Delta \chi^2_{D(j)} = \frac{d_j^2}{\left(1 - h_j\right)}$$

$$\Delta \chi^{2}_{\mathcal{D}(j)} = -2 \left[\mathcal{L} \mathcal{L}_{\mathrm{K}} - \mathcal{L} \mathcal{L}_{\mathrm{K}(j)} \right]$$

 \mathcal{LL}_K is the LogLikelihood of a model with K parameters estimated on the whole sample and $\mathcal{LL}_{K(j)}$ is from the estimate of the same model when all cases with pattern j are excluded

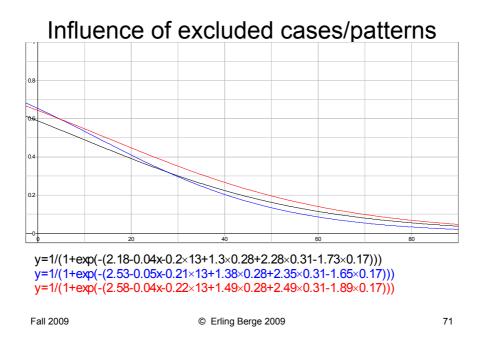
Fall 2009

© Erling Berge 2009



Influence of excluded cases/patterns

	Logit coefficient					
Variables in the	Sample	Excluding	Excluding			
model		case 99	case 96			
		$\Delta \chi 2P(i) = 18,34$	$\Delta \chi 2 P(i) = 29,20$			
lived	-,040	-,045	-,052			
educ	-,197	-,224	-,214			
contam	1,299	1,490	1,382			
hsc	2,279	2,492	2,347			
nodad	-1,731	-1,889	-1,658			
Constant	2,182	2,575	2,530			
2*LL(modell)	-142,652	-135,425	-136,124			



Conclusions (1)

Ordinary OLS do not work well for dichotomous dependent variables since

- It is impossible to obtain normally distributed errors or homoscedasticity, and since
- The model predicts probabilities outside the interval [0-1]
- The Logit model Is better
- Likelihood ratio tests statistic can be used to test nested models analogous to the F-statistic
- In large samples the chisquare distributed Wald statistic [or the normally distributed t=SQRT(Wald)] will be able to test single coefficients and provide confidence intervals
- There is no statistic similar to the coefficient of determination

Fall 2009

© Erling Berge 2009

Conclusions (2)

- Coefficient of estimated models can be interpreted by
 - 1. Log-odds (direct interpretation)
 - 2. Odds
 - 3. Odds ratio
 - 4. Probability (conditional effect plot)
- Non-linearity, case with influence, and multicollinearity leads to the same kinds of problems as in OLS regression (inaccurate or uncertain parameter values)
- Discrimination leads to problems of uncertain parameter values (large variance estimates)
- Diagnostic work is important

Fall 2004

© Erling Berge 2004